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ABSTRACT
In this work, the long-term spectral contours of a large dataset of popular commercial recordings were
analyzed. The aim was to analyze overall trends, as well as yearly and genre-specific ones. A novel method
for averaging spectral distributions is proposed, which yields results that are prone to comparison. With it,
we found out that there is a consistent leaning towards a target equalization curve that stems from practices
in the music industry, but also to some extent mimics natural, acoustic spectra of ensembles.

For as long as spectral analysis has been a viable
tool in the commercial sectors, audio engineers have
looked at integrated spectral responses as possible
answers for audio quality. Michael Paul Stavrou [1]
states that, while at Abbey Road, he lost endless
afternoons hopelessly chasing the illusive hit song
characteristic in technical parameters and Neil Dorf-
sman [2] acknowledges that, while many sound en-
gineers would not admit to doing it, he feels that
most of them use spectral analysis and compari-
son to previous work or other commercial work as
a standard tool during mixing. In the mixing con-
text, “achieving frequency balance (also referred to
as tonal balance) is a prime challenge in most mixes”

[3]. Bob Katz [4] proposes that the tonal balance of
a symphony orchestra is the ideal reference for the
spectral distribution of music. Yet there is no con-
sistent academic study that tackles the question of
how generally similar is the spectral response of crit-
ically acclaimed tracks, nor has anyone analyzed the
surrounding factors upon which it depends.

The seminal work in spectrum analysis of musical
signals is [5] (in which live signals are used), and it
pioneered the 1/3 octave filter bank analysis process
that influenced most early studies of the same type.
The musical signals were of individual instruments
and ensembles in live rooms. McKnight [6] took a
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similar approach in the realm of pre-recorded ma-
terial but was looking for technical correction mea-
sures in the distribution format and used a small
dataset. The earliest study that is closest to ours is
Bauer’s [7], where the author looked for the average
statistical distribution of a small classical dataset.
Moller [8] is the only analysis that tries to track
down the yearly evolution of spectra. The BBC [9]
researched the spectral content of pop music, using
custom recordings made for the purpose of the test
and [10] focused on the effect of the Compact Disc
media on the spectral contour of recordings. Re-
cently, [11] and [12] returned to the subject with a
broader dataset, but their analyses focused more on
dynamics and panning than frequency response, and
their dataset does not follow any objective criteria
of popularity. No study relies on a detailed FFT ap-
proach as we do, often choosing instead the coarser
and more error prone Real Time Analysis (RTA) fil-
ter bank approach; nor has any of the aforemen-
tioned works tackled a really large representative
dataset that follows the idea of commercial popu-
larity, and thus a ‘best-practices’ approach.

For our analysis to be consistent with general pub-
lic preference, we must run it on a dataset that in-
cludes the most commercially relevant songs of the
time period of interest. We chose to select songs that
had been number ones in either the US or the UK
charts, found primarily from [13, 14] and Wikipedia.
The anglo-saxon bias was considered acceptable as
most of the western world’s music industry has a
very strong anglo-saxon influence. The list of all the
aforementioned singles can be found at [15], a doc-
ument which also indicates the songs we were able
to use. Our dataset is comprised of about half the
singles that have been number one over the last 60
years, with a good representation of both genre and
year of production (as there were no pilot tests that
would allow an estimation of the ideal sample size,
we tried, as is customary, to get the largest pos-
sible number of observations). All the songs in our
dataset are uncompressed and, while we tried to find
un-remastered versions, it was not always possible.
This means that we are giving extra prominence to
current standards of production and the differences
we present should be even greater than that which
our data suggests. Table 1 shows the number of
songs we had available, divided by decade.

Years
Number
of Songs

50s 71
60s 156
70s. 129
80s 193
90s 96
After 2000 127
Total 772

Table 1: Number of songs per decade in the dataset.

In Section 2 we will look at the overall average of
all the songs in our collection. In Section 3 and
4, the data will be broken down by year and genre
respectively and some additional low-level features
are introduced to better characterize the differences
we are unveiling. Section 5 presents an overview
of the present research and presents some viable
future directions and applications. The aforemen-
tioned accompanying website [15] includes more de-
tailed plots, discussion of remastering, and extended
numerical data for the results that have been found
in this research.

1. OVERALL AVERAGE SPECTRUM OF COM-
MERCIAL RECORDINGS

Our main analysis focused on the monaural
(left+right channel over two), average long-term
spectrum of the aforementioned dataset. In order
for spectra to be comparable, we first make sure
that all songs are sampled at the same frequency
(44.1 kHz being the obvious candidate for us, as
most works stemmed from CD copies), and that we
apply the same window length (4096 samples) to all
content, so that the frequency resolution is consis-
tent (≈ 10 Hz). Let:

X (k, τ) =
(τ+1)wlen−1∑
n=τ ·wlen

x (n) e−j2πk
n
N ,

k =
{

0, 1, ..., 212 − 1
}
, τ =

{
0, 1, ...,

⌊
xlen

wlen

⌋} ,

(1)

where k is the frequency bin and τ the time win-
dow number. xlen and wlen are the song and win-
dow lengths, respectively. This will yield a K × T
matrix (K = wlen,T = bxlen/wlenc), and we then
consider the integrated spectral response to be the
mean magnitude over τ :
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X(k) =

∑
τ
|X (k, τ)|⌊
xlen

wlen

⌋
+ 1

. (2)

Equation (2) loses the 1 in the denominator when-
ever mod (xlen, wlen) = 0.

It is still necessary to tackle the problem of dif-
ferent spectral distributions having potentially dif-
ferent overall power values. Strict normalization is
not the answer, as spurious radical peaks in the fre-
quency distribution might cause overall lower power
levels, and the comparison would yield results that
showed a variability that was greater than the real
variability (one could take, as an example, a compar-
ison between a white noise spectrum and one that
adds a single sinusoid at 1000 Hz to the same white
noise — if the sinusoid is greater in magnitude, a
normalization process would bring all other bins in
the second spectrum down and lead us to conclude
that the spectra were very different, while in actu-
ality they are not). There are several available solu-
tions, but we opted to scale all spectral distributions
so that the bin sum would be 1, followed by av-
eraging the cumulative distribution function. This
means normalizing according to:

X̃ (k) =
X (k)∑
k

X (k)
, (3)

and accumulating over the bins:

Xc (k) =
k∑
i=0

X̃ (i). (4)

We then compute a mean calculation of each point
in the cumulative distribution (Xc (k)). The average
spectrum is found by computing the differences be-
tween adjacent bins, and multiplying by the average
magnitude of all songs. This is basically an inver-
sion of the process described above, and it is shown
in the following equation:

X̄AV (k) =

∑
k

X̄ (k)

S

(
Xc (k)−Xc (k − 1)

)
. (5)

with S the total number of songs. The result of aver-
aging the spectra of all songs in the dataset is shown
in Figure 1, along with a plot that overlaps all the in-
dividual distributions. The trend seen in the average
spectrum is consistent with what can be observed for
the individual distributions and the 95% confidence
intervals indicated are so narrow that they are not
perceptible on the shown scale. The average stan-
dard deviation for the normalized cumulative values
is 0.044, which is a well behaved value across fre-
quency bins (though averaging 2048 standard devi-
ations drowns out the larger values in the low-end
frequency region). All the subsequent analysis fol-
lows this averaging scheme.
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Fig. 1: Average spectrum of all available data.

2. YEARLY EVOLUTION OF SPECTRA AND
SPECTRAL FEATURES

Figure 2 shows the average spectrum evolution
through time, along with some decade-by-decade
snapshots of revealing frequency ranges.

This overall picture allows us to understand that
as well as the consistent net increase in magnitude,
there is a tendency for an extended low frequency
response with a lower resonant peak as we move to
more recent years. The presence area (1.5 kHz to
4 kHz) also shows some differences, with the slope
becoming shallower as the decades move forward,
meaning we are more prone to a boost in defini-
tion that may arise from the progressive change from
analogue to digital. The bottom part of the figure
shows that the regions where apparent discrepancies
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Fig. 2: Average spectra on a yearly base (top) and
frequency region details per decade (bottom), from
top to bottom: 40 − 200 Hz, 1 − 4 kHz and 7 −
20 kHz. Darker colors represent later decades in
the bottom plot.

are found are free from overlaps in the confidence
intervals (shown as upper and lower bands, nearly
overlapping), which can be interpreted as a rough
indicator that group divergences are not due to triv-
ial randomness, but to true underlying differences.

An interesting feature is the raggedness of the mid-
distribution (detailed in Figure 3), and particularly
its evolution. When we look at the comb-like shape
of the line representing the most recent decade, we
are seeing peaks in every note of the dodecaphonic
scale in equal-tempered western tuning. Looking
back in time we see that raggedness emphasizes some
notes over others, which may well indicate predom-

inance of certain tonalities over others. This is par-
ticularly clear during the 50s and 60s. While this is
an interesting point, if we are concerned with equal-
ization practices on the engineering and production
side we should discard tonal features and concen-
trate on the broad spectral contour (see [15] for all
data).
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Fig. 3: Detail of the emphasis on tonal frequencies
for the decades where the difference is more accen-
tuated. Actual fundamental frequencies are shown
as vertical black lines.

There are some additional spectral features whose
evolution might be interesting to look at, detailed in
Figure 4. Spectral centroid is defined following [16],
spectral crest conforms to the formulation given in
[17]. We simplified the spectral slope measure, in
that it is simply the slope of the log-log regression
of the data points between 100 Hz and 10000 Hz.
Finally, the spectral peak is purely a measure of the
log magnitude of the bin whose value represents the
global maximum.

The average magnitude peak and overall magnitude
are increasing, and the spectrum tends to become
flatter (partly due to the increasing amount of com-
pression, see [18]).

3. DIFFERENCES STEMMING FROM GENRE

Genre differences can also yield interesting results,
and these are shown in Figure 5. We took our
data from Wikipedia, with tags from EchoNest
and LastFM. The extremely extended low end re-
sponse of electronica and hip-hop is unmistakeable,
whereas, as expected, r&b and jazz have a lighter
bottom. The prominence of the top-end also yields
differences in excess of 10 dB which are meaningful
even in the light of the overall magnitude increase

AES 135th Convention, New York, USA, 2013 October 17–20

Page 4 of 7



Pestana et al. Spectral Characteristics of Commercial Recordings

	
  

	
   	
  

1950 1960 1970 1980 1990 2000 2010

500

1,000

1,500

Year

Fr
eq

ue
nc

y 
(H

z)

 

 

1950 1960 1970 1980 1990 2000 2010
−40

−30

−20

M
ag

ni
tu

de
 (d

B)

Spectral Centorid
Peak Frequency
Peak Magnitude

1950 1960 1970 1980 1990 2000 2010
0.01

0.02

0.03

Year

Sp
ec

tra
l C

re
st

 

 

1950 1960 1970 1980 1990 2000 2010
−1.5

−1

−0.5

Sp
ec

tra
l S

lo
pe

Spectral Crest
Spectral Slope

Fig. 4: Yearly evolution of low-level spectral de-
scriptors.

of the brighter genres. The brightest mixes seem to
be hip-hop ones, followed by electronic and disco.
Here, however, this enhanced top end is negligible
when considering that there is an overall enhance-
ment (due to higher loudness specifications). On
the dull side, folk and jazz genres suggest that there
is a natural top-end decay on more acoustic endeav-
ors, whereas electronic ones allow and benefit from
bigger frequency extensions.

On the middle-part of the spectrum, it is interest-
ing to observe that pop and rock seem to be more
openly harmonic in nature (again, raggedness in the
frequency response), with no preference of tonality.
Hip-hop in contrast, seems to have less harmonicity,
which may be due to the prominence of rhythmic el-
ements. Note that there might be a bias induced by
the number of songs in each genre. The domination
of pop and rock in the charts may possibly enhance
a more even distribution of tonal content, as there
are more songs in more varied keys. We chose not to
go into sub-genres, as the academic consensus is very
low in terms of genre definition, let alone sub-genres.
The genre divisions are much less clear-cut, and the
only region with no confidence interval overlap is the
low-end.

Table 2 shows the difference in the low-level descrip-
tors mentioned above. These reinforce the obser-
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Fig. 5: Average spectra by genre for a selection of
genres.

Genre
Spectral
Centroid

(Hz)

Spectral
Crest

Spectral
Slope

Peak
Magni-
tude
(dB)

Pop 868 0.0158 -0.9433 -30.58
Rock 858 0.0153 -0.9793 -30.66
Elect. 845 0.0194 -0.7461 -27.70
Hip-hop 662 0.0265 -0.8141 -22.52
Jazz 785 0.0141 -1.2929 -35.58
Folk 603 0.0191 -1.1824 -32.54
Disco 963 0.0148 -0.8042 -30.31
R&B 811 0.0149 -1.0336 -33.87
Soul 760 0.0157 -1.0303 -32.94

Table 2: Low-level spectral descriptors compiled by
genre.

vations above in that genre differences are signifi-
cant in terms of spectra. However, genre-popularity
shifts over time. Thus, hip-hop’s more prominent
loudness and extended bass response is evidently re-
lated to the fact that post-2000 songs share the same
tendency.

4. CONCLUSIONS AND FURTHER WORK

It seems that spectra of professionally produced
commercial recordings show consistent trends, which
can roughly be described as a linearly decaying dis-
tribution of around 5 dBper octave between 100 and
4000 Hz, becoming gradually steeper with higher
frequencies, and a severe low-cut around 60 Hz.
Apart from the artificial low-end boost, this is con-
sistent with the contours of an acoustic ensemble
found in previous works. We have also seen that
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spectra are dependent on genre and on the yearly
evolution of production standards.

This knowledge could be useful for a more informed
implementation of match-EQ type plug-ins or gen-
eral equalization contours on playback devices, as
well as for automated equalization work [19]. Our
analysis was performed on a monaural version of the
songs. It could be interesting to extend our approach
to differences between the left and right channels in
order to understand whether frequency balance on
the stereo field is relevant. The comparison between
the sum and difference channel spectra could also be
revealing. The broad statistical analysis of success-
ful commercial recordings shows a lot of promise for
knowledge that could be useful for intelligent sys-
tems [20]. Overall Dynamic Range Profiling (DRP),
or DRP per frequency band could also give us in-
teresting insights, now that we have loudness and
loudness range recommendations that are becoming
widespread.
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